China Best Sales Precision-Engineered Planetary Gearbox for Automated Assembly Lines with Good quality

Product Description

 
 

Product Description

Product Parameters

Parameters Unit Level Reduction Ratio Flange Size Specification
070 090 115 155 205 235
Rated output torque T2n N.m 1 3 55 130 208 342 588 1140
4 50 140 290 542 1050 1700
5 60 160 330 650 1200 2000
7 35 140 300 550 1100 1800
8 35 120 260 500 1000 1600
10 23 48 140 370 520 1220
2 12 55 130 208 342 588 1140
15 55 130 208 342 588 1140
20 50 140 290 542 1050 1700
25 60 160 330 650 1200 2000
28 60 160 330 650 1200 2000
30 60 160 330 650 1200 2000
35 60 160 330 650 1200 2000
40 60 160 330 650 1200 2000
50 60 160 330 650 1200 2000
70 35 140 310 550 1100 1800
100 23 48 140 370 520 1220
3 120 60 160 330 650 1200 2000
150 60 160 330 650 1200 2000
200 60 160 330 650 1200 2000
250 60 160 330 650 1200 2000
280 60 160 330 650 1200 2000
350 60 160 330 650 1200 2000
400 60 160 330 650 1200 2000
500 60 160 330 650 1200 2000
700 35 140 310 550 1100 1800
1000 23 48 140 370 520 1220
Maximum output torque T2b N.m 1,2,3 3~1000 3Times of Rated Output Torque
Rated input speed N1n rpm 1,2,3 3~1000 5000 3000 3000 3000 3000 2000
Maximum input speed N1b rpm 1,2,3 3~1000 10000 6000 6000 6000 6000 4000
Ultra Precision Backlash PS arcmin 1 3~10 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
arcmin 2 12~100 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2
arcmin 3 120~1000 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
High Precision Backlash P0 arcmin 1 3~10 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2
arcmin 2 12~100 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
arcmin 3 120~1000 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Precision Backlash P1 arcmin 1 3~10 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
arcmin 2 12~100 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
arcmin 3 12~1000 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9
Standard Backlash P2 arcmin 1 3~10 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
arcmin 2 12~100 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
arcmin 3 120~1000 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11
Torsional Rigidity Nm/arcmin 1,2,3 3~1000 3.5 10.5 20 39 115 180
Allowable radial force F2rb2 N 1,2,3 3~1000 1100 2200 5571 7610 10900 24000
Allowable axial force F2ab2 N 1,2,3 3~1000 630 1230 2550 3780 5875 11200
Moment of Inertia J1 kg.cm2 1 3~10 0.2 1.2 2 7.2 25 65
  2 12~100 0.08 0.18 0.7 1.7 7.9 14
  3 120~1000 0.03 0.01 0.04 0.09 0.21 0.82
Service Life hr 1,2,3 3~1000 20000
Efficiency η % 1 3~10 97%
2 12~100 94%
3 120~1000 91%
Noise Level dB 1,2,3 3~1000 ≤58 ≤60 ≤63 ≤65 ≤67 ≤70
Operating Temperature ºC 1,2,3 3~1000 -10~+90
Protection Class IP 1,2,3 3~1000 IP65
Weights kg 1 3~10 1.3 3.7 7.8 14.5 29 48
2 12~100 1.9 4.1 9 17.5 33 60
3 120~1000 2.3 4.8 12 22 37 72

FAQ

Q: How to select a gearbox?

A: Firstly, determine the torque and speed requirements for your application. Consider the load characteristics, operating environment, and duty cycle. Then, choose the appropriate gearbox type, such as planetary, worm, or helical, based on the specific needs of your system. Ensure compatibility with the motor and other mechanical components in your setup. Lastly, consider factors like efficiency, backlash, and size to make an informed selection.

Q: What type of motor can be paired with a gearbox?

A: Gearboxes can be paired with various types of motors, including servo motors, stepper motors, and brushed or brushless DC motors. The choice depends on the specific application requirements, such as speed, torque, and precision. Ensure compatibility between the gearbox and motor specifications for seamless integration.

Q: Does a gearbox require maintenance, and how is it maintained?

A: Gearboxes typically require minimal maintenance. Regularly check for signs of wear, lubricate as per the manufacturer’s recommendations, and replace lubricants at specified intervals. Performing routine inspections can help identify issues early and extend the lifespan of the gearbox.

Q: What is the lifespan of a gearbox?

A: The lifespan of a gearbox depends on factors such as load conditions, operating environment, and maintenance practices. A well-maintained gearbox can last for several years. Regularly monitor its condition and address any issues promptly to ensure a longer operational life.

Q: What is the slowest speed a gearbox can achieve?

A: Gearboxes are capable of achieving very slow speeds, depending on their design and gear ratio. Some gearboxes are specifically designed for low-speed applications, and the choice should align with the specific speed requirements of your system.

Q: What is the maximum reduction ratio of a gearbox?

A: The maximum reduction ratio of a gearbox depends on its design and configuration. Gearboxes can achieve various reduction ratios, and it’s important to choose 1 that meets the torque and speed requirements of your application. Consult the gearbox specifications or contact the manufacturer for detailed information on available reduction ratios.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery, Gearbox
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Customization:
Available

|

Customized Request

planetarygearbox

Types, Applications, and Lubrication of Planetary Gearboxes

A Planetary Gearbox is a device that can be used in a variety of applications. Their reduction ratios depend on the number of teeth in each gear. In this article, we will discuss the types, applications, and lubrication of planetary gearboxes. Hopefully, this article will be of help to you. If not, you can check out this article and discover more about this fascinating machine. There are many different types of planetary gearboxes.

Applications of planetary gearboxes

The planetary gearbox is a popular option for applications requiring precise positioning. Applications of the planetary gearbox range from plastic machinery to agricultural equipment, from goods & personnel lifts to industrial robotics. Some of the industries that benefit from this type of gearbox include robotics, intra-logistics, robotics for industrial automation, and medical equipment. Increasing automation is also fueling the growth of the industrial planetary gearbox market in APAC.
The compact design of planetary gears makes them excellent for reducing load inertia and maximizing torque. However, some applications require additional lubrication for sustained performance or high speeds. CZPT uses CZPT in its planetary gearboxes. In addition, lubrication prevents gear wear and minimizes noise and vibration. The planetary gearbox is also easy to install, thanks to its low-mass-inertia design.
Another application of the planetary gearbox is in axles and transfer cases. The planetary gear architecture consists of a sun gear, also called the central gear, and a ring-gear with internal teeth that are concentric to the sun gear. The two gears are connected via a carrier, and the output shaft is positioned on the ring-gear carrier. The gearbox can be configured in a variety of ways, depending on the speed-ratio requirements.
The planetary gear train is similar to that of a solar system. It comprises a sun gear and two or more outer gears, ring gear and carrier assembly. In this configuration, the outer gears are connected via a carrier and a ring gear. The planet gears are in constant mesh with each other, and power applied to one of these members will rotate the whole assembly. They are a very efficient choice for many applications.

Types

There are three types of planetary gearboxes, depending on their performance and efficiency. The basic model is highly efficient and transmits up to 97% of power input. Depending on the speed and torque that need to be transmitted, planetary gearboxes are used in many different applications. A planetary gearbox can reduce the speed of a roller or produce a more precise level of movement. Using a planetary gearbox for your printing press, for example, will maximize your gear transmission ratio.
This market research report analyzes the factors influencing the market for Planetary Gearboxes, as well as their sales and revenues. It also highlights industry trends and details the competitive landscape. It also provides a comprehensive analysis of the Planetary Gearbox industry and its drivers and restraints. It provides detailed information on the market size and future growth prospects. The study also includes an extensive discussion of the competitive landscape, identifying the top companies and key market players.
A planetary gearbox is often used to manufacture complicated machines. These gears are usually made of high-quality steel, which makes them extremely durable. Planetary gearboxes can also be used in the production of heavy machine elements. There are many benefits of a planetary gearbox, including its compactness and low mass inertia. The main advantage of a planetary gearbox is its ability to distribute torque. Compared to a normal gearbox, planetary gearboxes can provide torque that is nearly three times higher than its conventional counterpart.
The three main types of planetary gears are the single-stage, compound, and multi-stage. The general concept of a planetary gear is referred to as a compound planetary gear. This means that planetary gears are made up of one of these three basic structures: a meshed-planet structure, a shaft, and a multi-stage structure. This type of gear has multiple stages and is particularly useful for fast-dynamic laser cutting machines.
planetarygearbox

Design

A planetary gearbox is similar to a car’s transmission. All of its gears must have a certain number of teeth and be spaced equally apart. The teeth of a planet must mesh with the gears of the ring and sun to be functional. The number of teeth needed will depend on the number of planets and their spacing. This equation is a good starting point for designing a gearbox.
The dynamic properties of planetary gears are investigated using a parametric model. The stiffness of the mesh changes as the number of gear tooth pairs in contact varies during the gear rotation. Small disturbances in design realizations cause nonlinear dynamics, which results in noise and vibrations in the gear transmission. A mathematical system describing this process is developed using the basic principles of analytical mechanics. This mathematical model can be used to optimize any planetary gear.
This analysis assumes that the sun gear and planet gears have the same design modulus, which is a fundamental requirement of any mechanical gear. In reality, the ratio of these two gears is 24/16 versus -3/2. This means that a planetary gearbox’s output torque is 41.1 times the input torque. Considering this factor, we can make an accurate estimate of the total torque. The planetary gears are mounted face-to-face and connected to an electric motor.
A planetary gear set has to have a certain number of teeth that are odd or even. One way to overcome this issue is to double the number of teeth on the sun gear and the annulus gear. This will also solve irregularities. Another way to design a planetary gear set is to use the appropriate diametral pitch and module. There are many planetary gear sets available on the market, so it pays to understand the differences.

Lubrication

Lubrication for Planetary Gearboxes is important for the smooth functioning of the gear. Planetary gears are subjected to high levels of friction and heat, so they require regular lubrication. The gear housing is designed to dissipate heat away from the gear, but heat can still enter the gear, which can result in a poor lubrication condition. The best lubrication solution is synthetic oil, and the gear should be refilled with a minimum of 30 percent oil.
When lubricating a planetary gearbox, it is important to note that hydraulic oil is not suitable for planetary gearboxes, which cost over $1500. Hydraulic oil does not have the same viscosity and behavior with temperature fluctuations, making it less effective. The planetary gearbox may also overheat if a hose is not provided for case draining. A case drain hose is essential to prevent this from happening, because hot oil can cause overheating of the gearbox and damage to the gears.
Oil delivery conduits are positioned between each pair of planet gears. Each oil delivery conduit directs fresh oil toward the sun gear and the planet gear. The oil then disperses and exits from the gear train with considerable tangential velocity. The oil is redirected into a collection channel (56). The preferred embodiment uses herringbone gears, which pump oil axially outward into the channels.
The best way to choose the right type of lubrication is to consider its viscosity. Too high a viscosity will prevent the lubricant from flowing properly, which will cause metal-to-metal contact. The oil must also be compatible with the gearbox temperature. A suitable viscosity will increase the efficiency of the gearbox and prevent downtime. A reliable gearbox will ultimately result in higher profits and fewer costs.
planetarygearbox

Applications

This report examines the Industrial Planetary Gearbox Market and its current trends. It identifies the pre and post-COVID-19 effects of the industry. It outlines the advantages and disadvantages of the industrial planetary gearbox market. The report also explains the diverse financing resources and business models of the market. It includes the key players in the industry. Hence, it is essential to read this report carefully.
The report includes analysis and forecasts of the global market for planetary gearbox. It includes the product introductions, key business factors, regional and type segments, and end-users. It covers the sales and revenue of the market for each application field. The report also includes the regional and country-level market data. It also focuses on the market share of the key companies operating in the industry. It covers the competitive scenario in the global planetary gearbox market.
Another popular application for planetary gearboxes is in the toy industry. It is possible to design toys that look stunning with planetary gear systems. In addition to toys, clock makers also benefit from the planetary arrangement. In addition to producing a good-looking clock, this gearbox can reduce inertia and improve its efficiency. The planetary gearbox is easy to maintain, which makes it a good choice for clock applications.
In addition to traditional gear reductions, planetary gears are also used for 3D printing. Their huge gear ratio makes 3D printing easier. Furthermore, planetary gears are used to drive stepper motors, which turn much faster and produce a desired output. There are numerous industrial uses for planetary gearboxes. This article has explored a few of the most common ones. And don’t forget to explore their uses.

China Best Sales Precision-Engineered Planetary Gearbox for Automated Assembly Lines   with Good quality China Best Sales Precision-Engineered Planetary Gearbox for Automated Assembly Lines   with Good quality
editor by CX 2024-04-13