China manufacturer Efficient Gear Driven Planetary Gearbox for Heavy Machinery compound planetary gearbox

Product Description

 
 

Product Description

Product Parameters

 

Parameters Unit Level Reduction Ratio Flange Size Specification
042 060 090 115 142 180 220 280 330
Rated Output Torque T2n N.m 1 3 20 55 130 208 342 750 1140 1500 3000
4 19 50 140 290 542 1050 1700 5800 10190
5 22 60 160 330 650 1200 2000 4400 7180
6 20 55 140 300 550 1100 1800 3500 6500
7 19 50 140 300 550 1100 1800 3220 5000
8 17 45 120 260 500 1000 1600 2595 4080
10 14 40 100 230 450 900 1500 1820 3500
2 12 20 55 130 208 342 1050 1700 5800 10190
15 22 60 160 330 650 1200 2000 4400 7180
20 22 60 160 330 650 1200 2000 5800 10190
25 22 60 160 330 650 1200 2000 4400 7180
28 19 50 140 300 550 1100 1800 5800 10190
30 20 55 130 230 450 900 1500 1500 3500
35 22 60 160 330 650 1200 2000 4400 7180
40 22 60 160 330 650 1200 2000 5800 10190
50 22 60 160 330 650 1200 2000 4400 7180
70 19 50 140 300 550 1100 1800 3220 5000
100 14 40 100 230 450 900 1500 1820 3500
3 120 20 55 140 290 542 1050 1700 5800 10190
150 22 60 160 330 650 1200 2000 4400 7180
200 22 60 160 330 650 1200 2000 5800 10190
250 22 60 160 330 650 1200 2000 4400 7180
280 19 50 140 300 550 1100 1800 5800 10190
350 22 60 160 330 650 1200 2000 4400 7180
400 22 60 160 330 650 1200 2000 5800 10190
500 22 60 160 330 650 1200 2000 4400 7180
700 19 50 140 300 550 1100 1800 3220 5000
1000 14 40 100 230 450 900 1500 1820 3500
Maximum Output Torque T2b N.m 1,2,3 3~1000 3Times of Rated Output Torque 2Times of Rated Output Torque
Rated Input Speed N1n rpm 1,2,3 3~1000 5000 5000 3000 3000 3000 3000 2000 1500 1500
Maximum Input Speed N1b rpm 1,2,3 3~1000 10000 10000 6000 6000 6000 6000 4000 3000 3000
Ultra Precision Backlash PS arcmin 1 3~10 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1    
arcmin 2 12~100 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2    
arcmin 3 120~1000 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5    
High Precision Backlash P0 arcmin 1 3~10 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2    
arcmin 2 12~100 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3    
arcmin 3 120~1000 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7    
Precision Backlash P1 arcmin 1 3~10 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤15 ≤15
arcmin 2 12~100 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤18 ≤18
arcmin 3 12~1000 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤22 ≤22
Standard Backlash P2 arcmin 1 3~10 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5    
arcmin 2 12~100 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7    
arcmin 3 120~1000 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11    
Torsional Rigidity Nm/arcmin 1,2,3 3~1000 3 4.5 14 25 50 145 225 213.3 339
Allowable Radial Force F2rb2 N 1,2,3 3~1000 780 1550 3250 6700 9400 14500 30000 15000 17000
Allowable Axial Force F2ab2 N 1,2,3 3~1000 390 770 1630 3350 4700 7250 14000 12000 15000
Moment of Inertia J1 kg.cm2 1 3~10 0.05 0.2 1.2 2 7.2 25 65 39.9 73.4
kg.cm2 2 12~100 0.03 0.08 0.18 0.7 1.7 7.9 14 18.8 23.8
kg.cm2 3 120~1000 0.03 0.03 0.01 0.04 0.09 0.21 0.82 13.54 18.8
Service Life hr 1,2,3 3~1000 20000
Efficiency η % 1 3~10 97%
2 12~100 94%
3 120~1000 91%
Noise Level dB 1,2,3 3~1000 ≤56 ≤58 ≤60 ≤63 ≤65 ≤67 ≤70 ≤73 ≤75
Operating Temperature ºC 1,2,3 3~1000 -10~+90
Protection Class IP 1,2,3 3~1000 IP65
Weights kg 1 3~10 0.6 1.3 3.9 8.7 16 31 48 110 160
2 12~100 0.8 1.8 4.6 10 20 39 62 135 180
3 120~1000 1.2 2.3 5.3 11 22 44 68 145 192

FAQ

Q: How to select a gearbox?

A: Firstly, determine the torque and speed requirements for your application. Consider the load characteristics, operating environment, and duty cycle. Then, choose the appropriate gearbox type, such as planetary, worm, or helical, based on the specific needs of your system. Ensure compatibility with the motor and other mechanical components in your setup. Lastly, consider factors like efficiency, backlash, and size to make an informed selection.

Q: What type of motor can be paired with a gearbox?

A: Gearboxes can be paired with various types of motors, including servo motors, stepper motors, and brushed or brushless DC motors. The choice depends on the specific application requirements, such as speed, torque, and precision. Ensure compatibility between the gearbox and motor specifications for seamless integration.

Q: Does a gearbox require maintenance, and how is it maintained?

A: Gearboxes typically require minimal maintenance. Regularly check for signs of wear, lubricate as per the manufacturer’s recommendations, and replace lubricants at specified intervals. Performing routine inspections can help identify issues early and extend the lifespan of the gearbox.

Q: What is the lifespan of a gearbox?

A: The lifespan of a gearbox depends on factors such as load conditions, operating environment, and maintenance practices. A well-maintained gearbox can last for several years. Regularly monitor its condition and address any issues promptly to ensure a longer operational life.

Q: What is the slowest speed a gearbox can achieve?

A: Gearboxes are capable of achieving very slow speeds, depending on their design and gear ratio. Some gearboxes are specifically designed for low-speed applications, and the choice should align with the specific speed requirements of your system.

Q: What is the maximum reduction ratio of a gearbox?

A: The maximum reduction ratio of a gearbox depends on its design and configuration. Gearboxes can achieve various reduction ratios, and it’s important to choose 1 that meets the torque and speed requirements of your application. Consult the gearbox specifications or contact the manufacturer for detailed information on available reduction ratios.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery, Gearbox
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

planetarygearbox

Planetary Gearbox Advantages and Disadvantages

A planetary gearbox is a type of mechanical drive with a single output shaft. They are suitable for both clockwise and counterclockwise rotations, have less inertia, and operate at higher speeds. Here are some advantages and disadvantages of this type of gearbox. Let us see what these advantages are and why you should use them in your applications. Listed below are some of the benefits of planetary gearboxes.

Suitable for counterclockwise and clockwise rotation

If you want to teach children about the clock hands, you can buy some resources for counterclockwise and asymmetrical rotation. These resources include worksheets for identifying degrees of rotation, writing rules for rotation, and visual processing. You can also use these resources to teach angles. For example, the translation of shapes activity pack helps children learn about the rotation of geometric shapes. Similarly, the visual perception activity sheet helps children understand how to process information visually.
Various studies have been done to understand the anatomical substrate of rotations. In a recent study, CZPT et al. compared the position of the transitional zone electrocardiographically and anatomically. The authors found that the transitional zone was normal in nine of 33 subjects, indicating that rotation is not a sign of disease. Similarly, a counterclockwise rotation may be caused by a genetic or environmental factor.
The core tip data should be designed to work in both clockwise and counterclockwise rotation. Counterclockwise rotation requires a different starting point than a clockwise rotation. In North America, star-delta starting is used. In both cases, the figure is rotated about its point. Counterclockwise rotation, on the other hand, is done in the opposite direction. In addition, it is possible to create counterclockwise rotation using the same gimbal.
Despite its name, both clockwise and counterclockwise rotation requires a certain amount of force to rotate. When rotating clockwise, the object faces upwards. Counterclockwise rotation, on the other hand, starts from the top position and heads to the right. If rotating in the opposite direction, the object turns counterclockwise, and vice versa. The clockwise movement, in contrast, is the reverse of counterclockwise rotation.

Has less inertia

The primary difference between a planetary gearbox and a normal pinion-and-gear reducer is the ratio. A planetary gearbox will produce less inertia, which is an important advantage because it will reduce torque and energy requirements. The ratio of the planetary gearbox to its fixed axis counterpart is a factor of three. A planetary gearbox has smaller gears than a conventional planetary, so its inertia is proportional to the number of planets.
Planetary gears are less inertia than spur gears, and they share the load across multiple gear teeth. This means that they will have low backlash, and this is essential for applications with high start-stop cycles and frequent rotational direction changes. Another benefit is the high stiffness. A planetary gearbox will have less backlash than a spur gearbox, which means that it will be more reliable.
A planetary gearbox can use either spur or helical gears. The former provides higher torque ratings while the latter has less noise and stiffness. Both types of gears are useful in motorsports, aerospace, truck transmissions, and power generation units. They require more assembly time than a conventional parallel shaft gear, but the PD series is the more efficient alternative. PD series planetary gears are suitable for many applications, including servo and robotics.
In contrast, a planetary gear set can have varying input speed. This can affect the frequency response of the gearset. A mathematical model of the two-stage planetary gears has non-stationary effects and correlates with experimental findings. Fig. 6.3 shows an addendum. The dedendum’s minimum value is approximately 1.25m. When the dedendum is at its smallest, the dedendum has less inertia.
planetarygearbox

Offers greater reliability

The Planetary Gearbox is a better option for driving a vehicle than a standard spur gearbox. A planetary gearbox is less expensive, and they have better backlash, higher load capacity, and greater shock loads. Unlike spur gearboxes, however, mechanical noise is virtually nonexistent. This makes them more reliable in high-shock situations, as well as in a wide range of applications.
The Economy Series has the same power density and torque capacity of the Precision Helical Series, but it lacks the precision of the latter. In contrast, Economy Series planetary gearboxes feature straight spur planetary gearing, and they are used in applications requiring high torque. Both types of gearboxes are compatible with NEMA servo motors. If torque density is important, a planetary gearbox is the best choice.
The Dispersion of External Load: The SSI model has been extensively used to model the reliability of planetary gear systems. This model takes the contact force and fatigue strength of the system as generalized stress and strength. It also provides a theoretical framework to evaluate the reliability of planetary gear systems. It also has many other advantages that make it the preferred choice for high-stress applications. The Planetary Gearbox offers greater reliability and efficiency than traditional rack and pinion gear systems.
Planetary gearing has greater reliability and compact design. Its compact design allows for wider applications with concerns about space and weight. Additionally, the increased torque and reduction makes planetary gearboxes an excellent choice for a wide variety of applications. There are three major types of planetary gearboxes, each with its own advantages. This article describes a few of them. Once you understand their workings, you will be able to choose the best planetary gearbox for your needs.

Has higher operating speeds

When you look at planetary gearboxes, you might be confused about which one to choose. The primary issue is the application of the gearbox. You must also decide on secondary factors like noise level, corrosion resistance, construction, price, and availability worldwide. Some constructors work faster than others and deliver the gearboxes on the same day. However, the latter ones often deliver the planetary gearbox out of stock.
Compared to conventional gearboxes, a planetary gearbox can run at higher speeds when the input speed fluctuates. However, these gears are not very efficient in high-speed applications because of their increased noise levels. This makes planetary gears unsuitable for applications involving a great deal of noise. That is why most planetary gears are used in small-scale applications. There are some exceptions, but in general, a planetary gearbox is better suited for applications with higher operating speeds.
The basic planetary gearbox is a compact alternative to normal pinion-and-gear reducers. They can be used in a wide variety of applications where space and weight are concerns. Its efficiency is also higher, delivering 97% of the power input. It comes in three different types based on the performance. A planetary gearbox can also be classified as a worm gear, a spur gear, or a sprocket.
A planetary gearhead has a high-precision design and can generate substantial torque for their size. It also reduces backlash to two arc-min. Additionally, it is lubricated for life, which means no maintenance is needed. It can fit into a small machine envelope and has a small footprint. Moreover, the helical crowned gearing provides fast positioning. A sealed gearbox prevents abrasive dust from getting into the planetary gearhead.
planetarygearbox

Has drawbacks

The design of a planetary gearbox is compact and enables high torque and load capability in a small space. This gear arrangement also reduces the possibility of wear and tear. Planet gears are arranged in a planetary fashion, allowing gears to shift under load and a uniform distribution of torque. However, some disadvantages of planetary gears must be considered before investing in this gearbox.
While the planetary gearbox is a high precision motion-control device, its design and maintenance requirements are a concern. The bearing load is high, requiring frequent lubrication. Also, they are inaccessible. Despite these drawbacks, planetary gearboxes are suitable for a variety of tasks. They also have low backlash and high torsional stiffness, making them excellent choices for many applications.
As a result, the speed of a planetary gearbox varies with load and speed. At lower ratios, the sun gear becomes too large in relation to the planet gears. As the ratio increases, the sun gear will become too low, reducing torque. The planetary gears also reduce their torque in high-speed environments. Consequently, the ratio is a crucial consideration for planetary gearbox condition monitoring.
Excess drag may result from out-of-tolerance components or excessive lubrication. Drag should be measured both in directions and be within acceptable ranges. Grease and oil lubrication are two common planetary gearbox lubricants, but the choice is largely dependent on your application. While grease lubricates planetary gears well, oil needs maintenance and re-lubrication every few thousand hours.

China manufacturer Efficient Gear Driven Planetary Gearbox for Heavy Machinery   compound planetary gearboxChina manufacturer Efficient Gear Driven Planetary Gearbox for Heavy Machinery   compound planetary gearbox
editor by CX 2024-04-12